Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.294
Filtrar
1.
Comput Math Methods Med ; 2022: 8801484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844444

RESUMO

Objective: The lack of certain trace elements such as selenium, molybdenum, magnesium or related nutrients in the soil, water quality and food in the disease area, which caused disturbance of myocardium metabolism and resulted in injury and necrosis. The aim of the study was to explore the mechanism of ibuprofen alleviating myocardial injury caused by acute pancreatitis (AP). Method: We have established AP cell model and rat model. HE staining is used for histological examination. ELISA is used to determine the levels of proinflammatory cytokines (TNF-α and IL-6) and markers of myocardial injury (LDH and CK-MB). qRT-PCR and Western blot are used to analyze the mRNA and protein levels of related genes. Results: The expression level of AIM2 was significantly increased in AP cells; downregulation of AIM2 alleviated inflammation and myocardial injury induced by AP cells; ibuprofen could inhibit the expression of AIM2 and alleviate inflammation and myocardial injury induced by AP cells. In vivo experiments have found that ibuprofen can inhibit the expression of AIM2 to alleviate myocardial injury in AP rat. Conclusion: Ibuprofen can alleviate myocardial injury caused by acute pancreatitis by inhibiting the expression of AIM2.


Assuntos
Proteínas de Ligação a DNA , Ibuprofeno , Pancreatite , Doença Aguda , Animais , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Ibuprofeno/farmacologia , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/genética , Pancreatite/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
2.
Hematology ; 27(1): 499-505, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35473465

RESUMO

PURPOSE: Cytogenetically normal acute myeloid leukemia (CN-AML) is a heterogeneous disease with variable clinical outcomes. The identification of potential biomarkers to better classify the patients with unfavorable prognoses who may require more aggressive therapies is an emergent demand. PRDM16 is a transcriptional cofactor and histone methyltransferase, playing a critical role in maintaining hematopoietic stem cells, and MLL fusion-induced leukemogenesis. However, the prognostic value of PRDM16 in CN-AML is still unclear. MATERIALS AND METHODS: We retrospectively analyzed the PRDM16 expression and its association with gene mutations in CN-AML. Then the prognostic value of PRDM16 and its comparison with WT1 were analyzed. RESULTS: The results showed that about 73.6% of CN-AML patients harbored higher expression of PRDM16 than the healthy controls. Furthermore, CN-AML patients with high PRDM16 expression had a lower survival rate than the low PRDM16 expression group (50.5% vs. 83.3%, p = 0.0339). Interestingly, hemopoietic stem cell transplantation significantly improved the prognosis of CN-AML with high PRDM16 expression but not those with low PRDM16 expression. In terms of molecular genetics, high PRDM16 expression was significantly associated with a lower rate of CEBPA mutation (p = 0.01) and a higher rate of FLT3-ITD and DNMT3A mutation (p = 0.032 and p = 0.004, respectively). In addition, PRDM16 expression was significantly correlated with WT1 expression in CN-AML (r = 0.7, p < 0.001). These data suggested PRDM16 expression could be used to predict the outcome of patients with CN-AML. CONCLUSION: PRDM16 is significantly associated with FLT3-ITD and DNMT3A mutation and WT1 expression and serves as a potential prognostic biomarker in CN-AML.


Assuntos
Proteínas de Ligação a DNA , Leucemia Mieloide Aguda , Fatores de Transcrição , Análise Citogenética , Citogenética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Humanos , Prognóstico , Estudos Retrospectivos
3.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35015732

RESUMO

Sustained proliferative signaling and resisting cell death are hallmarks of cancer. Zinc finger protein 277 (ZNF277; murine Zfp277), a transcription factor regulating cellular senescence, is overexpressed in colon cancer, but its actions in intestinal homeostasis and neoplasia are unclear. Using human and murine intestine, human colon cancer cells, and ApcMin/+ mice with dysregulated ß-catenin signaling and exuberant intestinal neoplasia, we explored the actions of ZNF277/Zfp277 and defined the underlying mechanisms. In normal human and murine intestine, ZNF277/Zfp277 was expressed uniquely in early stem cell progenitors, undifferentiated transit-amplifying cells (TACs). Zfp277 was overexpressed in the ApcMin/+ mouse colon, implicating ZNF277/Zfp277 as a transcriptional target of ß-catenin signaling. We confirmed this by showing ß-catenin knockdown reduced ZNF277 expression and, using chromatin IP, identified 2 ß-catenin binding sites in the ZNF277 promoter. Zfp277 deficiency attenuated intestinal epithelial cell proliferation and tumor formation, and it strikingly prolonged ApcMin/+ mouse survival. RNA-Seq and PCR analyses revealed that Zfp277 modulates expression of genes in key cancer pathways, including ß-catenin signaling, the HOXD family that regulates development, and p21WAF1, a cell cycle inhibitor and tumor suppressor. In both human colon cancer cells and the murine colon, ZNF277/Zfp277 deficiency induced p21WAF1 expression and promoted senescence. Our findings identify ZNF277/Zfp277 as both a TAC marker and colon cancer oncogene that regulates cellular proliferation and senescence, in part by repressing p21WAF1 expression.


Assuntos
Colo/metabolismo , Neoplasias do Colo/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Mucosa Intestinal/metabolismo , Neoplasias Experimentais , Dedos de Zinco/genética , Animais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proliferação de Células , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/biossíntese , Humanos , Mucosa Intestinal/patologia , Camundongos , Regiões Promotoras Genéticas , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Fatores de Transcrição , Via de Sinalização Wnt/genética
4.
Mol Cell Biochem ; 477(3): 865-875, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35067783

RESUMO

Long non-coding RNA (LncRNA) LINC00160 was reported to be associated with cancer progression and mediates drug resistance. However, the role of LINC00160 in prostate cancer remains unclear. The study sought to study the function of LINC00160 in prostate cancer. Moreover, the potential mechanism was investigated. Silence of LINC00160 inhibited proliferation and promoted the apoptosis of prostate cancer cells, retarded the glycolysis of prostate cancer cells. By acting as a transcription activator, STAT3 induced LINC00160 expression, which regulated RCAN1 transcription epigenetically via binding to EZH2. Mechanically, LINC00160 mediated prostate cell proliferation and metabolism by repressing RCAN1 expression. In summary, LINC00160 may function as the novel marker for prostate cancer diagnosis and therapy.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas Musculares/biossíntese , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Masculino , Proteínas Musculares/genética , Proteínas de Neoplasias/genética , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Fator de Transcrição STAT3/genética
5.
Mol Pharmacol ; 101(2): 106-119, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862309

RESUMO

Elevated expression of lysine demethylase 6A (KDM6A) and lysine demethylase 6B (KDM6B) has been reported in prostate cancer (PCa). However, the mechanism underlying the specific role of KDM6A/B in PCa is still fragmentary. Here, we report novel KDM6A/B downstream targets involved in controlling PCa cell proliferation. KDM6A and KDM6B mRNAs were higher in prostate adenocarcinoma, lymph node metastatic site (LNCaP) but not in prostate adenocarcinoma, bone metastatic site (PC3) and prostate adenocarcinoma, brain metastatic site (DU145) cells. Higher KDM6A mRNA was confirmed at the protein level. A metastasis associated gene focused oligonucleotide array was performed to identify KDM6A/B dependent genes in LNCaP cells treated with a KDM6 family selective inhibitor, ethyl-3-(6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-ylamino)propanoate (GSK-J4). This identified five genes [V-myc myelocytomatosis viral oncogene homolog (avian) (c-MYC), neurofibromin 2 (merlin) (NF2), C-terminal binding protein 1 (CTBP1), EPH receptor B2 (EPHB2), and plasminogen activator urokinase receptor (PLAUR)] that were decreased more than 50% by GSK-J4, and c-MYC was the most downregulated gene. Array data were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR), which detected a reduction in c-MYC steady state mRNA and prespliced mRNA, indicative of transcriptional repression of c-MYC gene expression. Furthermore, c-MYC protein was also decreased by GSK-J4. Importantly, GSK-J4 reduced mRNA and protein levels of c-MYC target gene, cyclinD1 (CCND1). Silencing of KDM6A/B with small interfering RNA (siRNA) confirmed that expression of both c-MYC and CCND1 are dependent on KDM6B. Phosphorylated retinoblastoma (pRb), a marker of G1 to S-phase transition, was decreased by GSK-J4 and KDM6B silencing. GSK-J4 treatment resulted in a decrease in cell proliferation and cell number, detected by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay and conventional cell counting, respectively. Consequently, we conclude that KDM6B controlling c-MYC, CCND1, and pRb contribute regulation of PCa cell proliferation, which represents KDM6B as a promising epigenetic target for the treatment of advanced PCa. SIGNIFICANCE STATEMENT: Lysine demethylase 6A (KDM6A) and 6B (KDM6B) were upregulated in prostate cancer (PCa). We reported novel KDM6A/B downstream targets controlling proliferation. Amongst 84 metastasis associated genes, V-myc myelocytomatosis viral oncogene homolog (avian) (c-MYC) was the most inhibited gene by KDM6 inhibitor, ethyl-3-(6-(4,5-dihydro-1H-benzo[d]azepin-3(2H)-yl)-2-(pyridin-2-yl)pyrimidin-4-ylamino)propanoate (GSK-J4). This was accompanied by decreased c-MYC targets, cyclinD1 (CCND1) and phosphorylated retinoblastoma (pRb), which were KDM6B dependent. GSK-J4 decreased proliferation and cell counting. We conclude that KDM6B controlling c-MYC, CCND1, and pRb contribute regulation of PCa proliferation.


Assuntos
Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/biossíntese , Regulação Neoplásica da Expressão Gênica/fisiologia , Histona Desmetilases com o Domínio Jumonji/biossíntese , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/biossíntese , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Neoplasias da Próstata/genética , Fatores de Transcrição/genética
6.
Sci Rep ; 11(1): 23121, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848739

RESUMO

In our previous study, immunoinformatic tools were used to design a novel multiepitope cancer vaccine based on the most immunodominant regions of BORIS cancer-testis antigen. The final vaccine construct was an immunogenic, non-allergenic, and stable protein consisted of multiple cytotoxic T lymphocytes epitopes, IFN-γ inducing epitopes, and B cell epitopes according to bioinformatic analyzes. Herein, the DNA sequence of the final vaccine construct was placed into the pcDNA3.1 vector as a DNA vaccine (pcDNA3.1-VAC). Also, the recombinant multiepitope peptide vaccine (MPV) was produced by a transfected BL21 E. coli strain using a recombinant pET-28a vector and then, purified and screened by Fast protein liquid chromatography technique (FPLC) and Western blot, respectively. The anti-tumor effects of prophylactic co-immunization with these DNA and protein cancer vaccines were evaluated in the metastatic non-immunogenic 4T1 mammary carcinoma in BALB/c mice. Co-immunization with the pcDNA3.1-VAC and MPV significantly (P < 0.001) increased the serum levels of the MPV-specific IgG total, IgG2a, and IgG1. The splenocytes of co-immunized mice exhibited a significantly higher efficacy to produce interleukin-4 and interferon-γ and proliferation in response to MPV in comparison with the control. The prophylactic co-immunization regime caused significant breast tumors' growth inhibition, tumors' weight decrease, inhibition of metastasis formation, and enlarging tumor-bearing mice survival time, without any considerable side effects. Taking together, this cancer vaccine can evoke strong immune response against breast tumor and inhibits its growth and metastasis.


Assuntos
Vacinas Anticâncer/imunologia , Proteínas de Ligação a DNA/biossíntese , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Animais/prevenção & controle , Animais , Vacinas Anticâncer/química , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Cromatografia Líquida , Biologia Computacional , Simulação por Computador , Modelos Animais de Doenças , Epitopos , Feminino , Imunidade Humoral , Interferon gama/química , Neoplasias Mamárias Animais/terapia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/prevenção & controle , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Linfócitos T Citotóxicos/imunologia , Vacinas de Subunidades
7.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830093

RESUMO

Traumatic brain injury (TBI) is a disabling disorder and a major cause of death and disability in the world. Both single and repetitive traumas affect the brain acutely but can also lead to chronic neurodegenerative changes. Clinical studies have shown some dissimilarities in transactive response DNA binding protein 43 (TDP-43) expression patterns following single versus repetitive TBI. We explored the acute cortical post-traumatic changes of TDP-43 using the lateral fluid percussion injury (LFPI) model of single moderate TBI in adult male mice and investigated the association of TDP-43 with post-traumatic neuroinflammation and synaptic plasticity. In the ipsilateral cortices of animals following LFPI, we found changes in the cytoplasmic and nuclear levels of TDP-43 and the decreased expression of postsynaptic protein 95 within the first 3 d post-injury. Subacute pathological changes of TDP-43 in the hippocampi of animals following LFPI and in mice exposed to repetitive mild TBI (rmTBI) were studied. Changes in the hippocampal TDP-43 expression patterns at 14 d following different brain trauma procedures showed pathological alterations only after single moderate, but not following rmTBI. Hippocampal LFPI-induced TDP-43 pathology was not accompanied by the microglial reaction, contrary to the findings after rmTBI, suggesting that different types of brain trauma may cause diverse pathophysiological changes in the brain, specifically related to the TDP-43 protein as well as to the microglial reaction. Taken together, our findings may contribute to a better understanding of the pathophysiological events following brain trauma.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica , Hipocampo/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Masculino , Camundongos
8.
Sci Rep ; 11(1): 22346, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785764

RESUMO

Zinc-finger proteins are transcription factors with a "finger-like" domain that are widely involved in many biological processes. The zinc-finger protein 677 (ZNF677) belongs to the zinc-finger protein family. Previous reports have highlighted the tumor suppressive role of ZNF677 in thyroid and lung cancer. However, its role in colorectal cancer (CRC) has not been explored. ZNF677 protein expression was analyzed by immunohistochemistry in a large cohort of 1158 CRC patients. ZNF677 loss of expression was more frequent in CRC tissues (45.3%, 525/1158), when compared to that of normal tissue (5.1%, 11/214) (p < 0.0001) and was associated with mucinous histology (p = 0.0311), advanced pathological stage (p < 0.0001) and lymph node (LN) metastasis (p = 0.0374). Further analysis showed ZNF677 loss to be significantly enriched in LN metastatic CRC compared to overall cohort (p = 0.0258). More importantly, multivariate logistic regression analysis showed that ZNF677 loss is an independent predictor of LN metastasis in CRC (Odds ratio = 1.41; 95% confidence interval 1.05-1.87; p = 0.0203).The gain- and loss-of-function studies in CRC cell lines demonstrated that loss of ZNF677 protein expression prominently increased cell proliferation, progression of epithelial-mesenchymal transition and conferred chemoresistance, whereas its overexpression reversed the effect. In conclusion, loss of ZNF677 protein expression is common in Middle Eastern CRC and contributes to the prediction of biological aggressiveness of CRC. Therefore, ZNF677 could not only serve as a marker in predicting clinical prognosis in patient with CRC but also as a potential biomarker for personalized targeted therapy.


Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias Colorretais , Proteínas de Ligação a DNA/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Idoso , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Oriente Médio , Valor Preditivo dos Testes
9.
Bioengineered ; 12(2): 9585-9597, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34738503

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most common cancer types of head and neck cancer, accounting for 95% of all cases. However, the mechanisms underlying the pathogenesis of OSCC remain unclear. Circular RNA (CircRNA) has been extensively studied in the past decades and is a promising direction for the development of OSCC therapeutic targets. In this study, we aimed to investigate the role of circMTO1 in OSCC progression. First, we validated the characterization and expression of circMTO1 in OSCC. It was found that circMTO1 was upregulated in OSCC tumor tissues and cells. Subsequently, we conducted biological experiments. It was found that circMTO1 knockdown inhibited OSCC cell proliferation, migration, and invasion. Furthermore, we conducted a series of experiments to elucidate the underlying mechanisms. A novel circMTO1/miR-320a/ATRX axis was identified. Our results suggest that circMTO1 modulates ATRX expression to accelerate OSCC progression by sponging miR-320a. Moreover, we found that circMTO1 expression in OSCC was transcriptionally regulated by Zinc Finger Protein 460 (ZNF460). Our study showed a novel ZNF460/circMTO1/miR-320a/ATRX signaling in OSCC development.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Neoplasias de Cabeça e Pescoço/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Circular/metabolismo , RNA Mitocondrial/metabolismo , RNA Neoplásico/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Fatores de Transcrição/biossíntese , Proteína Nuclear Ligada ao X/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Neoplasias de Cabeça e Pescoço/genética , Humanos , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Circular/genética , RNA Mitocondrial/genética , RNA Neoplásico/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Transcrição/genética , Proteína Nuclear Ligada ao X/genética
10.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638720

RESUMO

Brassinazole-resistant (BZR) family genes encode plant-specific transcription factors (TFs), play essential roles in the regulation of plant growth and development, and have multiple stress-resistance functions. Nicotiana benthamiana is a model plant widely used in basic research. However, members of the BZR family in N. benthamiana have not been identified, and little is known about their function in abiotic stress. In this study, a total of 14 BZR members were identified in the N. benthamiana genome, which could be divided into four groups according to a phylogenetic tree. NbBZRs have similar exon-intron structures and conserved motifs, and may be regulated by cis-acting elements such as STRE, TCA, and ARE, etc. Organ-specific expression analysis showed that NbBZR members have different and diverse expression patterns in different tissues, and most of the members are expressed in roots, stems, and leaves. The analysis of the expression patterns in response to different abiotic stresses showed that all the tested NbBZR members showed a significant down-regulation after drought treatment. Many NbBZR genes also responded in various ways to cold, heat and salt stress treatments. The results imply that NbBZRs have multiple functions related to stress resistance.


Assuntos
Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Fatores de Transcrição , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , /metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
11.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34615711

RESUMO

Cervical cancer is the fourth most common cause of cancer in women worldwide in terms of both incidence and mortality. Persistent infection with high-risk types of human papillomavirus (HPV), namely 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68, constitute a necessary cause for the development of cervical cancer. Viral oncoproteins E6 and E7 play central roles in the carcinogenic process by virtue of their interactions with cell master proteins such as p53, retinoblastoma (Rb), mammalian target of rapamycin (mTOR), and c-MYC. For the synthesis of E6 and E7, HPVs use a bicistronic messenger RNA (mRNA) that has been studied in cultured cells. Here, we report that in cervical tumors, HPV-18, -39, and -45 transcribe E6/E7 mRNAs with extremely short 5' untranslated regions (UTRs) or even lacking a 5' UTR (i.e., zero to three nucleotides long) to express E6. We show that the translation of HPV-18 E6 cistron is regulated by the motif ACCaugGCGCG(C/A)UUU surrounding the AUG start codon, which we term Translation Initiation of Leaderless mRNAs (TILM). This motif is conserved in all HPV types of the phylogenetically coherent group forming genus alpha, species 7, which infect mucosal epithelia. We further show that the translation of HPV-18 E6 largely relies on the cap structure and eIF4E and eIF4AI, two key translation initiation factors linking translation and cancer but does not involve scanning. Our results support the notion that E6 forms the center of the positive oncogenic feedback loop node involving eIF4E, the mTOR cascade, and p53.


Assuntos
Proteínas de Ligação a DNA/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/genética , Papillomavirus Humano 18/genética , Proteínas Oncogênicas Virais/genética , RNA Mensageiro/genética , Regiões 5' não Traduzidas/genética , Linhagem Celular Tumoral , Códon de Iniciação/genética , Proteínas de Ligação a DNA/biossíntese , Feminino , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Células HaCaT , Células HeLa , Papillomavirus Humano 18/metabolismo , Humanos , Proteínas Oncogênicas Virais/biossíntese , Iniciação Traducional da Cadeia Peptídica/genética , RNA Viral/genética , Serina-Treonina Quinases TOR/genética , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
12.
Nat Neurosci ; 24(11): 1586-1600, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663958

RESUMO

The basolateral amygdala (BLA) plays essential roles in behaviors motivated by stimuli with either positive or negative valence, but how it processes motivationally opposing information and participates in establishing valence-specific behaviors remains unclear. Here, by targeting Fezf2-expressing neurons in the BLA, we identify and characterize two functionally distinct classes in behaving mice, the negative-valence neurons and positive-valence neurons, which innately represent aversive and rewarding stimuli, respectively, and through learning acquire predictive responses that are essential for punishment avoidance or reward seeking. Notably, these two classes of neurons receive inputs from separate sets of sensory and limbic areas, and convey punishment and reward information through projections to the nucleus accumbens and olfactory tubercle, respectively, to drive negative and positive reinforcement. Thus, valence-specific BLA neurons are wired with distinctive input-output structures, forming a circuit framework that supports the roles of the BLA in encoding, learning and executing valence-specific motivated behaviors.


Assuntos
Tonsila do Cerebelo/metabolismo , Atenção/fisiologia , Aprendizagem da Esquiva/fisiologia , Corpo Estriado/metabolismo , Proteínas de Ligação a DNA/genética , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/genética , Animais , Proteínas de Ligação a DNA/biossíntese , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Motivação/fisiologia , Proteínas do Tecido Nervoso/biossíntese
13.
Bioengineered ; 12(2): 9452-9462, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34696677

RESUMO

LYAR (Ly-1 antibody reactive) is a transcription factor with a specific DNA-binding domain, which plays a key role in the regulation of embryonic stem cell self-renewal and differentiation. However, the role of LYAR in human cancers remains unclear. This study aimed to analyze the prognostic value of LYAR in cancer. In this study, we evaluated the prognostic value of LYAR in various tumors. We research found that, compared with normal tissues, LYAR levels werehigher in a variety of tumors. LYAR expression level was associated with poor overall survival, progression-free interval, and disease-specific survival. LYAR expression was also related to tumor grade, stage, age, and tumor status. Cell counting kit-8, Transwell, and wound healing assay showed that knocking out LYAR significantly inhibited the proliferation, migration, and invasion of hepatocellular carcinoma cells. In addition, this study found that LYARexpression was significantly positively correlated with MKI67IP, BZW2, and CCT2. Gene set enrichment analysis results showed that samples with high LYAR expression levels were rich in spliceosomes, RNA degradation, pyrimidine metabolism, cell cycle, nucleotide excision repair, and base excision repair.


Assuntos
Carcinoma Hepatocelular/metabolismo , Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/biossíntese , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/biossíntese , Proteínas Nucleares/biossíntese , Carcinoma Hepatocelular/genética , Proteínas de Ligação a DNA/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética
14.
JCI Insight ; 6(17)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494554

RESUMO

The migrating keratinocyte wound front is required for skin wound closure. Despite significant advances in wound healing research, we do not fully understand the molecular mechanisms that orchestrate collective keratinocyte migration. Here, we show that, in the wound front, the epidermal transcription factor Grainyhead like-3 (GRHL3) mediates decreased expression of the adherens junction protein E-cadherin; this results in relaxed adhesions between suprabasal keratinocytes, thus promoting collective cell migration and wound closure. Wound fronts from mice lacking GRHL3 in epithelial cells (Grhl3-cKO) have lower expression of Fascin-1 (FSCN1), a known negative regulator of E-cadherin. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) on wounded keratinocytes shows decreased wound-induced chromatin accessibility near the Fscn1 gene in Grhl3-cKO mice, a region enriched for GRHL3 motifs. These data reveal a wound-induced GRHL3/FSCN1/E-cadherin pathway that regulates keratinocyte-keratinocyte adhesion during wound-front migration; this pathway is activated in acute human wounds and is altered in diabetic wounds in mice, suggesting translational relevance.


Assuntos
Proteínas de Transporte/genética , Adesão Celular/genética , Proteínas de Ligação a DNA/genética , Epiderme/lesões , Regulação da Expressão Gênica , Proteínas dos Microfilamentos/genética , RNA/genética , Fatores de Transcrição/genética , Cicatrização , Animais , Proteínas de Transporte/biossíntese , Linhagem Celular , Movimento Celular/genética , Proteínas de Ligação a DNA/biossíntese , Modelos Animais de Doenças , Epiderme/metabolismo , Epiderme/patologia , Queratinócitos/metabolismo , Camundongos , Proteínas dos Microfilamentos/biossíntese , Fatores de Transcrição/biossíntese
15.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445464

RESUMO

The GLABROUS1 enhancer-binding protein (GeBP) gene family encodes a typical transcription factor containing a noncanonical Leucine (Leu-)-zipper motif that plays an essential role in regulating plant growth and development, as well as responding to various stresses. However, limited information on the GeBP gene family is available in the case of the Gramineae crops. Here, 125 GeBP genes from nine Gramineae crops species were phylogenetically classified into four clades using bioinformatics analysis. Evolutionary analyses showed that whole genome duplication (WGD) and segmental duplication play important roles in the expansion of the GeBP gene family. The various gene structures and protein motifs revealed that the GeBP genes play diverse functions in plants. In addition, the expression profile analysis of the GeBP genes showed that 13 genes expressed in all tested organs and stages of development in rice, with especially high levels of expression in the leaf, palea, and lemma. Furthermore, the hormone- and metal-induced expression patterns showed that the expression levels of most genes were affected by various biotic stresses, implying that the GeBP genes had an important function in response to various biotic stresses. Furthermore, we confirmed that OsGeBP11 and OsGeBP12 were localized to the nucleus through transient expression in the rice protoplast, indicating that GeBPs function as transcription factors to regulate the expression of downstream genes. This study provides a comprehensive understanding of the origin and evolutionary history of the GeBP genes family in Gramineae, and will be helpful in a further functional characterization of the GeBP genes.


Assuntos
Produtos Agrícolas , Proteínas de Ligação a DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Poaceae , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Poaceae/genética , Poaceae/metabolismo
16.
J Biochem Mol Toxicol ; 35(9): e22844, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34250664

RESUMO

Osteoarthritis (OA) is a common joint disease that ultimately causes physical disability and imposes an economic burden on society. Cartilage destruction plays a key role in the development of OA. Vorinostat is an oral histone deacetylase (HDAC) inhibitor and has been used for the treatment of T-cell lymphoma. Previous studies have reported the anti-inflammatory effect of HDAC inhibitors in both in vivo and in vitro models. However, it is unknown whether vorinostat exerts a protective effect in OA. In this study, our results demonstrate that treatment with vorinostat prevents interleukin 1α (IL-1α)-induced reduction of type II collagen at both gene and protein levels. Treatment with vorinostat reduced the IL-1α-induced production of mitochondrial reactive oxygen species (ROS) in T/C-28a2 cells. Additionally, vorinostat rescued the IL-1α-induced decrease in the expression of the collagen type II a1 (Col2a1) gene and the expression of Sry-related HMG box 9 (SOX-9). Importantly, we found that vorinostat inhibited the expression of matrix metalloproteinase-13 (MMP-13), which is responsible for the degradation of type II collagen. Furthermore, vorinostat suppressed the expression of E74-like factor 3 (ELF3), which is a key transcription factor that plays a pivotal role in the IL-1α-induced reduction of type II collagen. Also, the overexpression of ELF3 abolished the protective effects of vorinostat against IL-1α-induced loss of type 2 collagen by inhibiting the expression of SOX-9 whilst increasing the expression of MMP-13. In conclusion, our findings suggest that vorinostat might prevent cartilage destruction by rescuing the reduction of type II collagen, mediated by the suppression of ELF3.


Assuntos
Condrócitos/metabolismo , Colágeno Tipo II/biossíntese , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-1alfa/farmacologia , Proteínas Proto-Oncogênicas c-ets/biossíntese , Fatores de Transcrição/biossíntese , Vorinostat/farmacologia , Linhagem Celular , Humanos , Interleucina-1alfa/metabolismo
17.
Neurochem Res ; 46(11): 2885-2896, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34226983

RESUMO

Brain microvascular endothelial cells (BMECs) injury is one of the main causes of cerebrovascular diseases. Circular RNA (circRNA) has been found to be involved in the regulation of cerebrovascular diseases progression. However, the role and mechanism of circ_0003423 in cerebrovascular diseases is still unclear. In our study, oxidized low density lipoprotein (ox-LDL)-induced HBMEC-IM cells were used to construct cerebrovascular cell injury model in vitro. Quantitative real-time PCR was used to determine the expression levels of circ_0003423, miR-589-5p and Ten-eleven translocation 2 (TET2). The interactions between miR-589-5p and circ_0003423 or TET2 were confirmed by dual-luciferase reporter assay, RIP assay and RNA pull-down assay. Cell viability, angiogenesis and apoptosis were measured using cell counting kit 8 assay, tube formation assay and flow cytometry. Cell oxidative stress was evaluated by detecting the levels of reactive oxygen species and lactate dehydrogenase. The protein levels were examined by western blot analysis. Our results showed that circ_0003423 was a downregulated circRNA in ox-LDL-induced HBMEC-IM cells. In the terms of mechanism, circ_0003423 was found to be a sponge of miR-589-5p. Function analysis showed that circ_0003423 overexpression could relieve ox-LDL-induced HBMEC-IM cell injury, and this effect could be reversed by miR-589-5p mimic. In addition, TET2 was confirmed to be a target of miR-589-5p, and its overexpression could alleviate ox-LDL-induced HBMEC-IM cell injury. Moreover, the rescue experiments also confirmed that TET2 silencing could abolish the inhibition effect of anti-miR-589-5p on ox-LDL-induced HBMEC-IM cell injury. In summary, our data showed that circ_0003423 alleviated ox-LDL-induced HBMEC-IM cells injury through regulating the miR-589-5p/TET2 axis.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação a DNA/biossíntese , Dioxigenases/biossíntese , Lipoproteínas LDL/toxicidade , MicroRNAs/biossíntese , Microvasos/metabolismo , RNA Circular/biossíntese , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Microvasos/efeitos dos fármacos
18.
Exp Eye Res ; 209: 108687, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216617

RESUMO

Age-related macular degeneration (AMD) is a severe retinal eye disease where dysfunctional mitochondria and damaged mitochondrial DNA in retinal pigment epithelium (RPE) have been demonstrated to underlie the pathogenesis of this devastating disease. In the present study, we aimed to examine whether damaged mitochondria induce inflammasome activation in human RPE cells. Therefore, ARPE-19 cells were primed with IL-1α and exposed to the mitochondrial electron transport chain complex III inhibitor, antimycin A. We found that antimycin A-induced mitochondrial dysfunction caused caspase-1-dependent inflammasome activation and subsequent production of mature IL-1ß and IL-18 in human RPE cells. AIM2 and NLRP3 appeared to be the responsible inflammasome receptors upon antimycin A-induced mitochondrial damage. We aimed at verifying our findings using hESC-RPE cells but antimycin A was absorbed by melanin. Therefore, results were repeated on D407 RPE cell cultures. Antimycin A-induced mitochondrial and NADPH oxidase-dependent ROS production occurred upstream of inflammasome activation, whereas K+ efflux was not required for inflammasome activation in antimycin A-treated human RPE cells. Collectively, our data emphasize that dysfunctional mitochondria regulate the assembly of inflammasome multiprotein complexes in the human RPE cells. The present study associates AIM2 with the pathogenesis of AMD.


Assuntos
Antimicina A/farmacologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Inflamassomos/genética , Degeneração Macular/genética , Mitocôndrias/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/biossíntese , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Mitocôndrias/metabolismo , RNA/genética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais
19.
Reprod Biol Endocrinol ; 19(1): 112, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271917

RESUMO

BACKGROUND: The tumor susceptibility gene 101 (Tsg101), a component of the endosomal sorting complex required for transport (ESCRT) complex I, is involved in multiple biological processes involving endomembranous structures and the plasma membrane. The role of Tsg101 in the uterine epithelium was investigated in Tsg101 floxed mice crossed with Lactoferrin-iCre mice (Tsg101d/d). METHODS: Tsg101d/d mice were bred with stud male mice and the status of pregnancy was examined on days 4 and 6. Histological analyses were performed to examine the uterine architecture. Immunofluorescence staining of several markers was examined by confocal microscopy. Uterine epithelial cells (UECs) were isolated from Tsg101f/f and Tsg101d/d mice, and the expression of necroptosis effectors was examined by RT-PCR, western blotting, and immunofluorescence staining. UECs were also subjected to RNA expression profiling. RESULTS: Tsg101d/d female mice were subfertile with implantation failure, showing unattached blastocysts on day 6 of pregnancy. Histological and marker analyses revealed that some Tsg101d/d day 4 pregnant uteri showed a disintegrated uterine epithelial structure. Tsg101d/d UECs began to degenerate within 18 h of culture. In UECs, expression of necroptosis effectors, such as RIPK1, RIPK3, and MLKL were first confirmed. UECs responded to a stimulus to activate necroptosis and showed increased cell death. CONCLUSIONS: Tsg101 deficiency in the uterine epithelium causes implantation failure, which may be caused by epithelial defects. This study provides evidence that UECs harbor a necroptotic machinery that responds to death-inducing signals. Thus, Tsg101 expression in the uterine epithelium is required for normal pregnancy in mice.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Implantação do Embrião/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Células Epiteliais/metabolismo , Fatores de Transcrição/biossíntese , Útero/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células Epiteliais/patologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Gravidez , Fatores de Transcrição/genética , Útero/patologia
20.
Aging (Albany NY) ; 13(13): 17097-17117, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252884

RESUMO

Aberrant expression and denaturation of Tau, amyloid-beta and TDP-43 can lead to cell death and is a major component of pathologies such as Alzheimer's Disease (AD). AD neurons exhibit a reduced ability to form autophagosomes and degrade proteins via autophagy. Using genetically manipulated colon cancer cells we determined whether drugs that directly inhibit the chaperone ATPase activity or cause chaperone degradation and endoplasmic reticulum stress signaling leading to macroautophagy could reduce the levels of these proteins. The antiviral chaperone ATPase inhibitor AR12 reduced the ATPase activities and total expression of GRP78, HSP90, and HSP70, and of Tau, Tau 301L, APP, APP692, APP715, SOD1 G93A and TDP-43. In parallel, it increased the phosphorylation of ATG13 S318 and eIF2A S51 and caused eIF2A-dependent autophagosome formation and autophagic flux. Knock down of Beclin1 or ATG5 prevented chaperone, APP and Tau degradation. Neratinib, used to treat HER2+ breast cancer, reduced chaperone levels and expression of Tau and APP via macroautophagy, and neratinib interacted with AR12 to cause further reductions in protein levels. The autophagy-regulatory protein ATG16L1 is expressed as two isoforms, T300 or A300: Africans trend to express T300 and Europeans A300. We observed higher basal expression of Tau in T300 cells when compared to isogenic A300 cells. ATG16L1 isoform expression did not alter basal levels of HSP90, HSP70 or HSP27, however, basal levels of GRP78 were reduced in A300 cells. The abilities of both AR12 and neratinib to stimulate ATG13 S318 and eIF2A S51 phosphorylation and autophagic flux was also reduced in A300 cells. Our data support further evaluation of AR12 and neratinib in neuronal cells as repurposed treatments for AD.


Assuntos
Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas de Choque Térmico/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Adenosina Trifosfatases/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/biossíntese , Precursor de Proteína beta-Amiloide/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína Beclina-1/genética , População Negra , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Chaperona BiP do Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Humanos , Quinolinas/farmacologia , Superóxido Dismutase-1/biossíntese , Superóxido Dismutase-1/genética , População Branca , Proteínas tau/biossíntese , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...